Observatory on Exchange Rate

Emerson Fernandes Marçal

CEMAP-EESP-FGV

Talking points

Brief Review of Observatory on Exchange Rate History:

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

Econometric Results

Brazilian Case:

Observatory Methodology

Results for Brazil Results for Others Countries Bilateral Exchange Rate Misalignment

- First Release of Exchange Rate Estimates were 2010 in CEMAP's Letter number 2:
- In 2013 Observatory on Exchange Rate was officially created;
- One year research partnership with BNDES (2014);

- First Release of Exchange Rate Estimates were 2010 in CEMAP's Letter number 2:
- In 2013 Observatory on Exchange Rate was officially created;
- One year research partnership with BNDES (2014);
- Three years research partnership with WTO Chair

Observatory on Exchange Rate: Some Facts

- First Release of Exchange Rate Estimates were 2010 in CEMAP's Letter number 2:
- In 2013 Observatory on Exchange Rate was officially created;
- Two years research partnership with IPEA (2013-2014);
- One year research partnership with BNDES (2014);
- Three years research partnership with WTO Chair

- First Release of Exchange Rate Estimates were 2010 in CEMAP's Letter number 2:
- In 2013 Observatory on Exchange Rate was officially created;
- Two years research partnership with IPEA (2013-2014);
- One year research partnership with BNDES (2014);
- Three years research partnership with WTO Chair

- First Release of Exchange Rate Estimates were 2010 in CEMAP's Letter number 2:
- In 2013 Observatory on Exchange Rate was officially created;
- Two years research partnership with IPEA (2013-2014);
- One year research partnership with BNDES (2014);
- Three years research partnership with WTO Chair (2015-2017):

Observatory in Action:

- Releases Estimates of Exchange Rate Misalignment in a Quartely Basis;
- A Series of Working Papers on the subject;
- Peer Review Papers Published on Economic Journals;
- Papers discussed with Staff of Peterson Institute, IMF and World Bank;
- Papers presented and discussed in Conferences such as IAAF,
 EMG-ECB, LAMES, Oxmetrics Users, Petersen Institute.

- Releases Estimates of Exchange Rate Misalignment in a Quartely Basis:
- A Series of Working Papers on the subject;
- Peer Review Papers Published on Economic Journals;
- Papers discussed with Staff of Peterson Institute, IMF and
- Papers presented and discussed in Conferences such as IAAF, EMG-ECB, LAMES, Oxmetrics Users, Petersen Institute. *FGV EESP

- A Series of Working Papers on the subject;
- Peer Review Papers Published on Economic Journals;
- Papers discussed with Staff of Peterson Institute, IMF and World Bank;
- Papers presented and discussed in Conferences such as IAAF, EMG-ECB, LAMES, Oxmetrics Users, Petersen Institute.

Observatory in Action:

- Releases Estimates of Exchange Rate Misalignment in a Quartely Basis;
- A Series of Working Papers on the subject;
- Peer Review Papers Published on Economic Journals;
- Papers discussed with Staff of Peterson Institute, IMF and World Bank;
- Papers presented and discussed in Conferences such as IAAF,
 EMG-ECB, LAMES, Oxmetrics Users, Petersen Institute.

Observatory in Action:

- Releases Estimates of Exchange Rate Misalignment in a Quartely Basis:
- A Series of Working Papers on the subject;
- Peer Review Papers Published on Economic Journals;
- Papers discussed with Staff of Peterson Institute, IMF and World Bank;
- Papers presented and discussed in Conferences such as IAAF, EMG-ECB, LAMES, Oxmetrics Users, Petersen Institute. **FGV EESP

Researchers:

- Emerson Fernandes Marçal (CEMAP);
- Beatrice Zimmerman (World Bank);
- Diogo de Prince (CEMAP UNIFESP);
- Giovanni Merlin (PhD candidate, EESP);
- Ronan Cunha (PhD candidate, EESP);
- Oscar Simões (PhD candidate, EAESP).

Exchange Rate Misalignment: a Macroeconomic Phenomena.

- Effective exchange rate misalignment:
 - Deviations from a long run macroeconomic equilibrium;
 - Economic discussion to define this equilibrium;
 - Empirical questions about how to estimate this equilibrium

Exchange Rate Misalignment: a Macroeconomic Phenomena.

- Effective exchange rate misalignment:
 - Deviations from a long run macroeconomic equilibrium;
 - Economic discussion to define this equilibrium;
 - Empirical questions about how to estimate this equilibrium

Exchange Rate Misalignment: a Macroeconomic Phenomena.

- Effective exchange rate misalignment:
 - Deviations from a long run macroeconomic equilibrium;
 - Economic discussion to define this equilibrium;
 - Empirical questions about how to estimate this equilibrium;

Exchange Rate Misalignment: Different Approaches.

Different Norms to address exchange rate misalignment:

- Current account Norm:
 - Current account Targets: Level of real exchange rate that guarantees some target level of current account results is obtained;
 - NFA stabilization Norm: Current account Level that stabilizes NFA:
- Relative Price Models
 - Behavioral Approach: Real exchange rate in line with fundamentals obtained from a theoretical model and implemented using econometric models;
 - Purchasing Power Parity;

Exchange Rate Misalignment: Different Approaches.

Different Norms to address exchange rate misalignment:

- Current account Norm:
 - Current account Targets: Level of real exchange rate that guarantees some target level of current account results is obtained;
 - NFA stabilization Norm: Current account Level that stabilizes NFA;
- Relative Price Models:
 - Behavioral Approach: Real exchange rate in line with fundamentals obtained from a theoretical model and implemented using econometric models;
 - Purchasing Power Parity;

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

Current Account Targets.

- Current account Targets: Level of real exchange rate necessary to reach some target current account result;
 - Need to estimate elasticity of trade (exports and imports) to real exchange rate;
 - Address aggregate consistence;
- Problems:
 - Results can be sensitive to elasticity estimate;
 - These elasticities can be time varying;
 - Some degree of arbitrarily in defining target levels;
 - Targets are not necessarily tied to a economic equilibrium model;

Current Account Targets.

- Current account Targets: Level of real exchange rate necessary to reach some target current account result;
 - Need to estimate elasticity of trade (exports and imports) to real exchange rate;
 - Address aggregate consistence;
- Problems:
 - Results can be sensitive to elasticity estimate;
 - These elasticities can be time varying;
 - Some degree of arbitrarily in defining target levels;
 - Targets are not necessarily tied to a economic equilibrium model;

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

Stabilization of NFA

- Stability of NFA: Real exchange rate necessary to reach some NFA level:
 - It can be seen as a minimum prudential level to avoid current account imbalances:
 - Simplicity and transparency;
- - Stabilize NFA does not prevent necessarily countries to have
 - The criteria is asymmetrical countries with positive NFA can

- Stability of NFA: Real exchange rate necessary to reach some NFA level;
 - It can be seen as a minimum prudential level to avoid current account imbalances;
 - Simplicity and transparency;
- Problems:
 - Stabilize NFA does not prevent necessarily countries to have disorderly current account adjustment;
 - The criteria is asymmetrical countries with positive NFA can deal with current accounts results below the level;

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

- Some studies using not temporally aggregated data suggests that PPP may hold in the long run. (Taylor, 2010);
 - Strong evidence that PPP holds for dollar-pound sterling parity using consumer price deflators and long time series; (Ahmad & Craighead)
- Misalignment is calculated in relation to a base country;
- This approach can not be linked to competitiveness;
- Balassa-Samuelson effect or any source of time trends must be addressed;
- What to do if PPP does not hold?
 - Decompose exchange rate in permanent and transitory components using time series techniques (Beveridge-Nelson decomposition and others) required

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

Effective equilibrium RER based on fundamentals.

- Fundamental Real exchange rate is calculated using a econometric model based on theoretical model:
 - Cointegration techniques based on selected series associated with fundamentals;
 - Some possible choices of the fundamentals variables
 - an indicator of relative tradeable and non-tradeable prices;
 - net international investment position as GDP share;
 - terms of trade;
 - government consumption;
 - trade openness;
 - etc ...

• From many intertemporal macroeconomic models it's possible to obtain to steady state equations:

$$\overline{tb} = -r * \overline{NFA} \tag{1}$$

$$\overline{RER} = -\phi \overline{tb} + \lambda \overline{X} \tag{2}$$

- First equation states that a country can run a trade deficits if revenues from NFA are large enough;
- Second equation states that if a country can run a trade deficit in equilibrium the RER has to appreciate;
- The term X accounts for any other factor affecting equilibrium RER

 From many intertemporal macroeconomic models it's possible to obtain to steady state equations:

$$\overline{tb} = -r * \overline{NFA} \tag{1}$$

$$\overline{RER} = -\phi \overline{tb} + \lambda \overline{X} \tag{2}$$

- First equation states that a country can run a trade deficits if revenues from NFA are large enough;
- Second equation states that if a country can run a trade deficit in equilibrium the RER has to appreciate;
- The term X accounts for any other factor affecting equilibrium RER PROPERTY AS Balassa Samulason Effect:

 28 Balassa Samulason Effect:

 29 Balassa Samulason Effect:

 20 Balassa Samulason Effect:

 21 Balassa Samulason Effect:

 22 Balassa Samulason Effect:

 23 Balassa Samulason Effect:

 24 Balassa Samulason Effect:

 25 Balassa Samulason Effect:

 26 Balassa Samulason Effect:

 27 Balassa Samulason Effect:

 28 Balassa Samulason Effett:

 28 Balassa Samu

 From many intertemporal macroeconomic models it's possible to obtain to steady state equations:

$$\overline{tb} = -r * \overline{NFA} \tag{1}$$

$$\overline{RER} = -\phi \overline{tb} + \lambda \overline{X} \tag{2}$$

- First equation states that a country can run a trade deficits if revenues from NFA are large enough;
- Second equation states that if a country can run a trade deficit in equilibrium the RER has to appreciate;
- The term X accounts for any other factor affecting equilibrium RER
 as Balassa-Samuleson Effect:

 From many intertemporal macroeconomic models it's possible to obtain to steady state equations:

$$\overline{tb} = -r * \overline{NFA} \tag{1}$$

$$\overline{RER} = -\phi \overline{tb} + \lambda \overline{X} \tag{2}$$

- First equation states that a country can run a trade deficits if revenues from NFA are large enough;
- Second equation states that if a country can run a trade deficit in equilibrium the RER has to appreciate;
- The term X accounts for any other factor affecting equilibrium RER-such
 as Balassa-Samuleson Effect:

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

First Step: Effective RER based on fundamentals.

- Fundamental Real exchange rate is calculated using a econometric model:
 - Cointegration techniques based on selected series associated with fundamentals (Faruquee, 1994, IMF Working Paper, 90);
 - Some possible choices of the fundamentals variables
 - an indicator of relative tradeable and non-tradeable prices;
 - net international investment position as GDP share;
- Econometric Questions:
 - Detect long run relationship cointegration analysis;
 - Perform permanent and transitory decomposition to better understand the adjustment towards equilibrium;
 - Gonzalo and Granger (1995) decomposition is the most common choice:

First Step: Effective RER based on fundamentals.

- Fundamental Real exchange rate is calculated using a econometric model:
 - Cointegration techniques based on selected series associated with fundamentals (Faruquee, 1994, IMF Working Paper, 90);
 - Some possible choices of the fundamentals variables
 - an indicator of relative tradeable and non-tradeable prices;
 - net international investment position as GDP share;
- Econometric Questions:
 - Detect long run relationship cointegration analysis;
 - Perform permanent and transitory decomposition to better understand the adjustment towards equilibrium;
 - Gonzalo and Granger (1995) decomposition is the most common choice;

Second Step: Bilateral RER based on fundamentals.

- Converting real effective exchange rate misalignment in bilateral misalignment:
 - From real effective exchange rates estimates calculated under step 1 for a group of countries it is possible to calculate bilateral misalignment for each country using Alberola, Cervero et al. (1999);

Approaches to estimate Misalignment:

Current Account Targets.

Stabilization of NFA

PPP

Effective equilibrium RER based on fundamentals.

Observatory Approach:

A Long Run Perspective:

A century of PPC:

A Long Run Perspective:

Econometric Results

Brazilian Case:

- Real Effective Exchange Rate IFS-IMF CPI index;
- NFA/GDP Milesi & Ferreti database until 2000 and Brazilian Central Bank afterward:
- Balassa Samuelson effect ratio of wholesales price and consumer price index compared to same ratio of trading partners - FGV, IBGE and IFS-IMF;
- Balassa Samuelson effect ratio of GDP per capita of country and its trading partners - FGV, IBGE and IFS-IMF;
- Relative Terms of trade Brazilian terms of trade (Funcex) compared to trading parterns' terms of trade (IFS-IMF);

Target Variable: Monthly

Target Variable: Annual

Fundamentals Variables:

Trade balance versus NFA

RER and trade balance

RER and Relative Prices

RER and NFA

RER and TOT

RER and Relative GDP per capita

All graphs together

+ LRER × NFA

Cross-Plot of RER and Fundamentals:

LRER ¥ LBSPIB

				Joh	ansen Coli	ntegration	Test				
						Tr	ace Statisti	c - Unrestri	cted const	ant	
			Indogeno	us Variable	5		r=0	r=1	r=2	r=3	r=4
M1	ТВ	NFA				Statistic	21.433	7.2471			
IVII	16	INFA				p-value	[0.005] **	[0.007] **			
M2	REER	NFA	тот	BS		Statistic	49.739	19.179	8.5688	2.2557	
1012	NEEN	NEA	101	63		p-value	[0.031] *	[0.491]	[0.414]	[0.133]	
M3	REER	NFA	тот	BS-PIB		Statistic	50.91	17.84	7.69	1.54	
1013	NEER	NEA	101	03-110		p-value	[0.023] *	[0.587]	[0.507]	[0.215]	
M4	REER	TB	TOT	TOT	BS	Statistic	81.8	47.342	19.864	9.718	1.2628
1014	NEER	10	101	101	0.0	p-value	[0.003] **	[0.054]	[0.443]	[0.309]	[0.261]
M5	REER	TB	NFA	TOT	BS-PIB	Statistic	90.12	44.679	19.45	7.9422	0.95682
1013	INCLIN.		1410	101	03110	p-value	[0.000] **	[0.095]	[0.472]	[0.479]	[0.328]
							Trace 9	Statistic - R	estricted c	onstant	
							r=0	r=1	r=2	r=3	r=4
M6	ТВ	NFA				Statistic	21.48	7.2928			
1010	10	INIA				p-value	[0.032] *	[0.114]			
M7	REER	NFA	тот	BS		Statistic	58.26	27.47	13.24	3.04	
	HEER	19174	101			p-value	[0.019] *	[0.269]	[0.353]	[0.581]	
M8	REER	NFA	тот	BS-PIB		Statistic	58.24	25.08	11.79	4.12	
1010	HEER	19174	101	D3-1 1D		p-value	[0.019] *	[0.400]	{0.476]	[0.407]	
M9	REER	TB	TOT	TOT	BS	Statistic	88.813	54.336	26.097	13.851	4.6786
1015	HEEH	10	101	101	55	p-value	[0.004] **	[0.046] *	[0.341]	[0.307]	[0.332]
M10	REER	TB	NFA	TOT	BS-PIB	Statistic	98.017	52.223	26.976	12.774	5.7855
10110	HEEH	10	INIM	101	D3-11D	p-value	[0.000] **	[0.071]	[0.294]	[0.390]	[0.215]
							Trac	e Statistic	- No const	ante	
							r=0	r=1	r=2	r=3	r=4
M11	ТВ	NFA				Statistic	10.548	0.32055			
IVILL	16	INCA				p-value	[0.097]	[0.643]			

Cointegration Test:

Johansen Co	integration T	est	 		

						111	ace statisti	c - Onresun	cteu const	aric	
			Indogenou	us Variable:	5		r=0	r=1	r=2	r=3	r=4
M1	ТВ	NFA				Statistic	21.433	7.2471			
IVII	16	INFA				p-value	[0.005] **	[0.007] **			
M2	REER	NFA	тот	BS		Statistic	49.739	19.179	8.5688	2.2557	
1012	NEEN	NIA	101	63		p-value	[0.031] *	[0.491]	[0.414]	[0.133]	
M3	REER	NFA	TOT	DC DID	BS-PIB St		50.91	17.84	7.69	1.54	
1013	NEEN	NIA	101	D3-11D		p-value	[0.023] *	[0.587]	[0.507]	[0.215]	
M4	REER	TB	TOT	тот	BS	Statistic	81.8	47.342	19.864	9.718	1.2628
1014	NEEN	10	101	101	65	p-value	[0.003] **	[0.054]	[0.443]	[0.309]	[0.261]
M5	REER	TB	NFA	тот	BS-PIB	Statistic	90.12	44.679	19.45	7.9422	0.95682
1913	NEER	10	INFA	101	D3-FIB	p-value	[0.000] **	[0.095]	[0.472]	[0.479]	[0.328]
							Trace 9	tatistic - Re	estricted c	onstant	

							r=0	r=1	r=2	r=3	r=4
M6	ТВ	NFA				Statistic	21.48	7.2928			
IVID	16	INFA				p-value	[0.032] *	[0.114]			
M7	REER	NFA	тот	BS		Statistic	58.26	27.47	13.24	3.04	
1017	REER	INFA	101	ь,		p-value	[0.019] *	[0.269]	[0.353]	[0.581]	
M8	REER	NFA	тот	BS-PIB		Statistic	58.24	25.08	11.79	4.12	
IVIO	REER	INFA	101	D3-FID		p-value	[0.019] *	[0.400]	{0.476]	[0.407]	
M9	REER	ТВ	тот	тот	BS	Statistic	88.813	54.336	26.097	13.851	4.6786
IVID	REER	10	101	101	ь.	p-value	[0.004] **	[0.046] *	[0.341]	[0.307]	[0.332]
M10	REER	тв	NFA	тот	BS-PIB	Statistic	98.017	52.223	26.976	12.774	5.7855
IVITU	neth	18	INFA	101	DO-PIB	p-value	[0.000] **	[0.071]	[0.294]	[0.390]	[0.215]
							Troc	o Statistic	No const	anto	

				mac	e statistic -	INO COLISC	ance	
				r=0	r=1	r=2	r=3	r=4
M11	тв	NIE A	Statistic	10.548	0.32055			
INITT	16	NFA	p-value	[0.097]	[0.643]			

				Joh	ansen Coir	ntegration	Test				
						Tr	ace Statisti	c - Unrestri	cted const	ant	
			Endogeno	us Variable	S		r=0	r=1	r=2	r=3	r=4
	TD	NIE A				Statistic	21.433	7.2471			
M1	TB	NFA				p-value	[0.005] **	[0.007] **			
M2	REER	NFA	тот	BS		Statistic	49.739	19.179	8.5688	2.2557	
1012	REER	NEA	101	В0		p-value	[0.031] *	[0.491]	[0.414]	[0.133]	
M3	REER	NFA	тот	BS-PIB		Statistic	50.91	17.84	7.69	1.54	
IVIS	REER	NEA	101	D3-FID		p-value	[0.023] *	[0.587]	[0.507]	[0.215]	
M4	REER	TB	TOT	TOT	BS	Statistic	81.8	47.342	19.864	9.718	1.2628
1014	NEER	10	101	101	55	p-value	[0.003] **	[0.054]	[0.443]	[0.309]	[0.261]
M5	REER	тв	NFA	TOT	BS-PIB	Statistic	90.12	44.679	19.45	7.9422	0.95682
1013	NEER	10	INCH	101	03-110	p-value	[0.000] **	[0.095]	[0.472]	[0.479]	[0.328]
							Trace 9	tatistic - R	estricted o	onstant	
							r=0	r=1	r=2	r=3	r=4
M6	ТВ	NEA				Statistic	21.48	7.2928			
IVID	ID	INFA				n-value	[0.032] *	[0.114]			
M7	REER	NEA	TOT	BS		Statistic	58.26	27.47	13.24	3.04	
1017	neen	INFA	101			p-value	[0.019] *	[0.269]	[0.353]	[0.581]	
M8	REER	NEA	тот	BS-PIB		Statistic	58.24	25.08	11.79	4.12	
IVIO	ILLLI	TNI AS	101	D3-1 1D		p-value	[0.019] *	[0.400]	{0.476]	[0.407]	
M9	REER	TB	TOT	тот	BS	Statistic	88.813	54.336	26.097	13.851	4.6786
1015	ILLLI	10	101	101	55	p-value	[0.004] **	[0.046] *	[0.341]	[0.307]	[0.332]
M10	REER	TB	NEA	TOT	BS-PIB	Statistic	98.017	52.223	26.976	12.774	5.7855
10110	ILLII	10	INIA	101	03-110	p-value	[0.000] **	[0.071]	[0.294]	[0.390]	[0.215]
							Trac	e Statistic	- No const	ante	
							r=0	r=1	r=2	r=3	r=4
M11	ТВ	NFA				Statistic	10.548	0.32055			
MITT	18	NFA				n.value	[0.007]	En 6491			

[0.097] [0.643]

p-value

M11 ТВ NFA

				Joh:	ansen Coir	tegration	Test				
						Tr	ace Statisti	c - Unrestri	cted const	ant	
			Indogeno	us Variable:	s		r=0	r=1	r=2	r=3	r=4
M1	ТВ	NFA				Statistic	21.433	7.2471			
IVII	16	INFA				p-value	[0.005] **	[0.007] **			
M2	REER	NFA	тот	BS		Statistic	49.739	19.179	8.5688	2.2557	
1012	NEEN	NEA	101	D3		p-value	[0.031] *	[0.491]	[0.414]	[0.133]	
M3	REER	NFA	тот	BS-PIB		Statistic	50.91	17.84	7.69	1.54	
1013	NEER	NEA	101	D3-11D		p-value	[0.023] *	[0.587]	[0.507]	[0.215]	
M4	REER	ТВ	TOT	тот	BS	Statistic	81.8	47.342	19.864	9.718	1.2628
1014	INCLIN		101	101	- 55	p-value	[0.003] **	[0.054]	[0.443]	[0.309]	[0.261]
M5	REER	ТВ	NFA	TOT	BS-PIB	Statistic	90.12	44.679	19.45	7.9422	0.95682
1013	INCLIS.		141.0	101	03110	p-value	[0.000] **	[0.095]	[0.472]	[0.479]	[0.328]
							Trace 5	tatistic - Ri	estricted c	onstant	
							r=0	r=1	r=2	r=3	r=4
ME	TR	NΕΔ				Statistic	r=0 21.48	r=1 7.2928	r=2	r=3	r=4
M6	ТВ	NFA				Statistic p-value			r=2	r=3	r=4
			TOT	BS			21.48 [0.032] * 58.26	7.2928	13.24	3.04	r=4
M6 M7	TB REER	NFA NFA	тот	BS		p-value	21.48 [0.032] *	7.2928 [0.114]			r=4
M7	REER	NFA				p-value Statistic	21.48 [0.032] * 58.26	7.2928 [0.114] 27.47	13.24	3.04	r=4
			тот	BS BS-PIB		p-value Statistic p-value	21.48 [0.032] * 58.26 [0.019] *	7.2928 [0.114] 27.47 [0.269]	13.24 [0.353]	3.04 [0.581]	r=4
M7 M8	REER	NFA NFA	тот	BS-PIB	BS	p-value Statistic p-value Statistic	21.48 [0.032] * 58.26 [0.019] * 58.24	7.2928 [0.114] 27.47 [0.269] 25.08	13.24 [0.353] 11.79	3.04 [0.581] 4.12	r=4 4.6786
M7	REER	NFA			BS	p-value Statistic p-value Statistic p-value	21.48 [0.032] * 58.26 [0.019] * 58.24 [0.019] * 88.813	7.2928 [0.114] 27.47 [0.269] 25.08 [0.400]	13.24 [0.353] 11.79 [0.476]	3.04 [0.581] 4.12 [0.407]	
M7 M8	REER REER REER	NFA NFA TB	тот	BS-PIB TOT		p-value Statistic p-value Statistic p-value Statistic	21.48 [0.032] * 58.26 [0.019] * 58.24 [0.019] * 88.813	7.2928 [0.114] 27.47 [0.269] 25.08 [0.400] 54.336	13.24 [0.353] 11.79 {0.476] 26.097	3.04 [0.581] 4.12 [0.407] 13.851	4.6786
M7 M8	REER	NFA NFA	тот	BS-PIB	BS BS-PIB	p-value Statistic p-value Statistic p-value Statistic p-value Statistic	21.48 [0.032] * 58.26 [0.019] * 58.24 [0.019] * 88.813 [0.004] ** 98.017 [0.000] **	7.2928 [0.114] 27.47 [0.269] 25.08 [0.400] 54.336 [0.046]* 52.223 [0.071]	13.24 [0.353] 11.79 {0.476] 26.097 [0.341] 26.976 [0.294]	3.04 [0.581] 4.12 [0.407] 13.851 [0.307] 12.774 [0.390]	4.6786 [0.332]
M7 M8	REER REER REER	NFA NFA TB	тот	BS-PIB TOT		p-value Statistic p-value Statistic p-value Statistic p-value Statistic	21.48 [0.032] * 58.26 [0.019] * 58.24 [0.019] * 88.813 [0.004] ** 98.017 [0.000] **	7.2928 [0.114] 27.47 [0.269] 25.08 [0.400] 54.336 [0.046]* 52.223	13.24 [0.353] 11.79 {0.476] 26.097 [0.341] 26.976 [0.294]	3.04 [0.581] 4.12 [0.407] 13.851 [0.307] 12.774 [0.390]	4.6786 [0.332] 5.7855
M7 M8	REER REER REER	NFA NFA TB	тот	BS-PIB TOT		p-value Statistic p-value Statistic p-value Statistic p-value Statistic	21.48 [0.032] * 58.26 [0.019] * 58.24 [0.019] * 88.813 [0.004] ** 98.017 [0.000] **	7.2928 [0.114] 27.47 [0.269] 25.08 [0.400] 54.336 [0.046]* 52.223 [0.071]	13.24 [0.353] 11.79 {0.476] 26.097 [0.341] 26.976 [0.294]	3.04 [0.581] 4.12 [0.407] 13.851 [0.307] 12.774 [0.390]	4.6786 [0.332] 5.7855

Statistic 10.548

p-value

0.32055

[0.097] [0.643]

							VEC	M										_
Endogenous Variables		Model 7		м	odel 8				Mod	del 9					Mod	iel 10		
	***************************************					L	oading	Matrix					***********					
	Coef.	SD*	t	Coef.	SD*	t	Coef.		t	Coef.	SD	t	Coef.	SD	t	Coef.	SD	t
REER	- 0.7	0.2	-3.24	- 0.8	0.2	- 4.30	- 0.8	0.2	- 5.0	0.0	0.0	4.1	-0.70	0.01	-64.9	0.01	0.01	0.8
TB							3.3	2.4	1.4	- 0.5	0.1	- 3.8	-4.14	-0.52	7.9	-0.52	0.19	- 2.8
NFA	0.1	0.1	1.24	0.1	0.1	1.62	0.1	0.1	1.5	0.0	0.0	1.1	-0.05	0.01	- 3.6	0.01	0.01	2.1
BS	- 0.1	0.1	-0.49				0.1	0.1	0.9	- 0.0	0.0	- 2.6						
BS-PIB	1			- 0.0	0.0	-0.72							-0.03	0.00	- 9.4	0.00	0.00	1.2
TOT	0.2	0.1	1.74	0.1	0.1	1.16	0.1	0.1	0.8	0.0	0.0	2.8	0.30	0.02	12.6	0.02	0.01	3.6
					(Cointeg	rated F	Relatio	nships	;								
REER	1.0			1.0			1.0			0.0	0.0		1.00			0.00		
TB							0.0			1.0	0.0		0.00			1.00		
NFA	-0.5	0.3	-1.81	-1.1	0.2	-4.93	-0.9	0.2	-3.59	2.9	1.5	1.95	-0.48	0.19	-2.55	2.09	1.467	1.43
BS	0.5	0.1	4.651				0.5	0.1	4.87	0.0	0.0							
BS-PIB				-0.8	0.2	-3.85							-0.85	0.15	-5.70	0.00		
TOT	-1.2	0.2	-6.64	-1.0	0.2	-6.39	-1.4	0.2	-7.98	0.0	0.0		-0.96	0.13	-7.44	0.00		
Constant	-1.0	0.6	-1.62	3.7	1.6	2.368	-0.3	0.6	-0.52	0.0	0.0		4.01	1.21	3.31	0.00		

							VEC	M										
Endogenous Variables		Model 7		м	odel 8				Mo	del 9					Mo	del 10		
						L	oading	Matrix										
	Coef.	SD*	t	Coef.	SD*	t	Coef.	SD*	t	Coef.	SD	t	Coef.	SD	t	Coef.	SD	t
REER	- 0.7	0.2	-3.24	- 0.8	0.2	- 4.30	- 0.8	0.2	- 5.0	0.0	0.0	4.1	-0.70	0.01	-64.9	0.01	0.01	0.8
TB	T						3.3	2.4	1.4	- 0.5	0.1	- 3.8	-4.14	-0.52	7.9	-0.52	0.19	- 2.8
NFA	0.1	0.1	1.24	0.1	0.1	1.62	0.1	0.1	1.5	0.0	0.0	1.1	-0.05	0.01	- 3.6	0.01	0.01	2.1
BS	- 0.1	0.1	-0.49				0.1	0.1	0.9	- 0.0	0.0	- 2.6						
BS-PIB	1			- 0.0	0.0	-0.72							-0.03	0.00	- 9.4	0.00	0.00	1.2
TOT	0.2	0.1	1.74	0.1	0.1	1.16	0.1	0.1	0.8	0.0	0.0	2.8	0.30	0.02	12.6	0.02	0.01	3.6
					(Cointeg	rated F	Relatio	nship				1					
REER	1.0			1.0			1.0			0.0	0.0		1.00			0.00		
TB	1						0.0			1.0	0.0		0.00			1.00		
NFA	-0.5	0.3	-1.81	-1.1	0.2	-4.93	-0.9	0.2	-3.59	2.9	1.5	1.95	-0.48	0.19	-2.55	2.09	1.467	1.43
BS	0.5	0.1	4.651				0.5	0.1	4.87	0.0	0.0							
BS-PIB				-0.8	0.2	-3.85							-0.85	0.15	-5.70	0.00		
TOT	-1.2	0.2	-6.64	-1.0	0.2	-6.39	-1.4	0.2	-7.98	0.0	0.0		-0.96	0.13	-7.44	0.00		
Constant	-1.0	0.6	-1.62	3.7	1.6	2.368	-0.3	0.6	-0.52	0.0	0.0		4.01	1.21	3.31	0.00		

							VEC	M										
Endogenous Variables		Model 7		м	odel 8				Mod	lel 9					Mod	del 10		
						L	oading	(Matri)	(
	Coef.	SD*	t	Coef.	SD*	t	Coef.	SD*	t	Coef.	SD	t	Coef.	SD	t	Coef.	SD	t
REER	- 0.7	0.2	-3.24	- 0.8	0.2	- 4.30	- 0.8	0.2	- 5.0	0.0	0.0	4.1	-0.70	0.01	-64.9	0.01	0.01	0.8
TB	T						3.3	2.4	1.4	- 0.5	0.1	- 3.8	-4.14	-0.52	7.9	-0.52	0.19	- 2.8
NFA	0.1	0.1	1.24	0.1	0.1	1.62	0.1	0.1	1.5	0.0	0.0	1.1	-0.05	0.01	- 3.6	0.01	0.01	2.1
BS	- 0.1	0.1	-0.49				0.1	0.1	0.9	- 0.0	0.0	- 2.6						
BS-PIB				- 0.0	0.0	-0.72							-0.03	0.00	- 9.4	0.00	0.00	1.2
TOT	0.2	0.1	1.74	0.1	0.1	1.16	0.1	0.1	0.8	0.0	0.0	2.8	0.30	0.02	12.6	0.02	0.01	3.6
						Cointe	rated I	Relatio	nshins									
REER	1.0			1.0			1.0			0.0	0.0		1.00			0.00		
TB							0.0			1.0	0.0		0.00			1.00		
NFA	-0.5	0.3	-1.81	-1.1	0.2	-4.93	-0.9	0.2	-3.59	2.9	1.5	1.95	-0.48	0.19	-2.55	2.09	1.467	1.43
BS	0.5	0.1	4.651				0.5	0.1	4.87	0.0	0.0							
BS-PIB	T			-0.8	0.2	-3.85	T						-0.85	0.15	-5.70	0.00		
TOT	-1.2	0.2	-6.64	-1.0	0.2	-6.39	-1.4	0.2	-7.98	0.0	0.0		-0.96	0.13	-7.44	0.00		
Constant	-1.0	0.6	-1.62	3.7	1.6	2 368	-0.3	0.6	-0.52	0.0	0.0		4.01	1.21	3 31	0.00		•••••

							VEC	M										
Endogenous																		
Variables		Model 7		M	odel 8				Mod	iel 9					Mod	iel 10		
						L	oading	Matrix	(
	Coef.	SD*	t	Coef.	SD*	t	Coef.		t	Coef.	SD	t	Coef.	SD	t	Coef.	SD	t
REER	- 0.7	0.2	-3.24	- 0.8	0.2	- 4.30	- 0.8	0.2	- 5.0	0.0	0.0	4.1	-0.70	0.01	-64.9	0.01	0.01	0.8
TB							3.3	2.4	1.4	- 0.5	0.1	- 3.8	-4.14	-0.52	7.9	-0.52	0.19	- 2.8
NFA	0.1	0.1	1.24	0.1	0.1	1.62	0.1	0.1	1.5	0.0	0.0	1.1	-0.05	0.01	- 3.6	0.01	0.01	2.1
BS	- 0.1	0.1	-0.49				0.1	0.1	0.9	- 0.0	0.0	- 2.6						
BS-PIB				- 0.0	0.0	-0.72							-0.03	0.00	- 9.4	0.00	0.00	1.2
TOT	0.2	0.1	1.74	0.1	0.1	1.16	0.1	0.1	0.8	0.0	0.0	2.8	0.30	0.02	12.6	0.02	0.01	3.6
					(cointeg	rated F	Relatio	nships									
REER	1.0			1.0			1.0			0.0	0.0		1.00			0.00		
TB							0.0			1.0	0.0		0.00			1.00		
NFA	-0.5	0.3	-1.81	-1.1	0.2	-4.93	-0.9	0.2	-3.59	2.9	1.5	1.95	-0.48	0.19	-2.55	2.09	1.467	1.43
BS	0.5	0.1	4.651				0.5	0.1	4.87	0.0	0.0							
BS-PIB				-0.8	0.2	-3.85							-0.85	0.15	-5.70	0.00		
TOT	-1.2	0.2	-6.64	-1.0	0.2	-6.39	-1.4	0.2	-7.98	0.0	0.0		-0.96	0.13	-7.44	0.00		
Constant	-1.0	0.6	-1.62	3.7	1.6	2.368	-0.3	0.6	-0.52	0.0	0.0		4.01	1.21	3.31	0.00		

Decomposing exchange rate misalignment:

Imposing these restrictions, it is possible to decompose misalignment into two pieces:

$$mis_{i,t}^{VECM_2} = T_{i,t}^{ECM_{2,1}} + T_{i,t}^{EMC_{2,2}}$$
 (3)

By calculating $mis_{i,t}^{VECM_2} - mis_{i,t}^{VECM_1}$ it is possible to obtain:

$$mis_{i,t}^{VECM_2} - mis_{i,t}^{VECM_1} = \left(\frac{h_{2,1}}{h_{1,1}} - 1\right)h_{1,1}f_{1,1,t} + \left(\frac{h_{2,1}}{h_{1,1}}\right)\left(h_{1,1}f_{2,1t} - h_{1,1}f_{1,1t}\right) + h_{2,2}f_{2,1t}$$
(4)

where $h_{2,i}$ and $h_{1,i}$ are the weights, in $VECM_2$ and $VECM_1$ respectively, of the domestic vectors on misalignment, and $f_{2,i}$ and $f_{1,i}$ are the estimated cointegrated vectors.

- VECM-1: NFA, TOT, BS
- VECM-2: TB, NFA, TOT, BS;

Changes in Estimated Exchange Rate Misalignment:

Changes in Estimated Exchange Rate Misalignment:

Time Series Properties of Exchange Rate Misalignment:

- No time correlation in the first ECM;
- Positive autocorrelation in the second ECM;

A Long Run Perspective:

Observatory Methodology

Results for Brazil Results for Others Countries

Bilateral Exchange Rate Misalignment

Model 2:

Model 3:

A Long Run Perspective:

Observatory Methodology

Results for Brazil

Results for Others Countries

Bilateral Exchange Rate Misalignment

Australia

Austria

Belgium

Canada

China

Colombia

Denmark

Finland

France

Germany

Netherlands

Ireland

Italy

Japan

Korea

Mexico

New Zeland

Norway

Portugal **Portugal**

Singapore

Spain

Switzerland

Sweden

Turkey

United Kingdom

Uruguay

United States

A Long Run Perspective:

Observatory Methodology

Results for Brazil

Results for Others Countries

Bilateral Exchange Rate Misalignment

Brazil - Europe.

Multilateral versus Bilateral Misalignment:

Brazil - United States

Multilateral versus Bilateral Misalignment:

Brazil - Rest of the World

Multilateral versus Bilateral Misalignment:

